Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size.

نویسندگان

  • U Thorsteinsdottir
  • G Sauvageau
  • R K Humphries
چکیده

After bone marrow transplantation (BMT), there is a rapid regeneration to normal pretransplantation levels in the number of hematopoietic progenitors and mature end cells, whereas hematopoietic stem cell (HSC) numbers recover to only 5% to 10% of normal levels. This suggests that HSC are significantly restricted in their self-renewal behavior and hence in their ability to repopulate the host stem cell compartment. Previously, we have reported that HSC engineered to overexpress the homeobox transcription factor HOXB4 have a large repopulation advantage over untransduced cells as assessed at 4 months in a murine transplantation model (Sauvageau et al, Genes Dev 9:1753, 1995). This phenomenon has now been examined in detail for periods extending to 12 months in cohorts of mice transplanted with various numbers of HOXB4-transduced HSC. In all mice analyzed, HOXB4-transduced HSC were capable of fully reconstituting the HSC compartment, resulting, on average, in some 14-fold greater numbers of HSC than observed when transplanting control, non-HOXB4-transduced bone marrow cells. These data indicate that HOXB4 is a limiting factor in the regeneration of HSC to normal levels after BMT. Furthermore, we show that HOXB4-transduced HSC did not expand above levels normally observed in unmanipulated mice, indicating that its overexpression does not override the regulatory mechanisms that maintain the HSC pool size within normal limits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular interactions involved in HOXB4-induced activation of HSC self-renewal.

HOXB4 overexpression induces unique in vivo and in vitro expansion of hemopoietic stem cells (HSCs) without causing leukemia. Very little is known about the molecular basis underlying HOXB4-induced HSC self-renewal. We now report the in vitro proliferation and in vivo expansion capacity of primary bone marrow (BM) cells engineered to overexpress selected HOXB4 point mutants lacking either the c...

متن کامل

HOXB4-Induced Expansion of Adult Hematopoietic Stem Cells Ex Vivo

Hox transcription factors have emerged as important regulators of primitive hematopoietic cell proliferation and differentiation. In particular, HOXB4 appears to be a strong positive regulator of hematopoietic stem cell (HSC) self-renewal. Here we demonstrate the potency of HOXB4 to enable high-level ex vivo HSC expansion. Cultures of nontransduced or GFP-transduced murine bone marrow cells exp...

متن کامل

Downregulation of Prdm16 mRNA is a specific antileukemic mechanism during HOXB4-mediated HSC expansion in vivo.

Overexpression of HOXB4 in hematopoietic stem cells (HSCs) leads to increased self-renewal without causing hematopoietic malignancies in transplanted mice. The molecular basis of HOXB4-mediated benign HSC expansion in vivo is not well understood. To gain further insight into the molecular events underlying HOXB4-mediated HSC expansion, we analyzed gene expression changes at multiple time points...

متن کامل

Hoxb4 transduction down-regulates Geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential.

Retrovirus-mediated transduction of Hoxb4 enhances hematopoietic stem cell (HSC) activity and enforced expression of Hoxb4 induces in vitro development of HSCs from differentiating mouse embryonic stem cells, but the underlying molecular mechanism remains unclear. We previously showed that the HSC activity was abrogated by accumulated Geminin, an inhibitor for the DNA replication licensing fact...

متن کامل

HEMATOPOIESIS AND STEM CELLS Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells

Enforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell self-renewal and expansion ex vivo and in vivo. To investigate the downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line EML. Two genome-wide analytical techniques were used: RNA expre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 94 8  شماره 

صفحات  -

تاریخ انتشار 1999